x3j16/92-0122, WG21/N0199
An Alternative to Old-style Casts

Bjarne Stroustrup

AT&T Bell Laboratories
- Murray Hill, New Jersey 07974

ABSTRACT

This is a proposal for a set of conversion operators that can be used instead of traditional
casts. The purpose of the new operators is to cleanly integrate conversions based on run-
time type information into C++ and to provide safer and more easily checked alternative
conversion operators.

1 Introduction

This proposal it the direct outcome of work on run-time type information and in particular the issue of
using run-time type information to provide a checked cast from a base to a derived class. Along the way,
general issues of conversioas, notation for conversions, and the safety of conversions became key to several
discussions at standards meeting, conferences, mail reflectors, and elsewhere. This is a proposal for four
conversion operators

dynamic_cast<T>(e) // for run-time checked casts
static_cast<T> (e) // for reasonably well-behaved casts
reinterpret_cast<T>(e) // for horrible casts

const_cast<T>(e) // for casting away const and volatile

A appendix discusses the need for ‘‘casting away const.”’

Issues of type safety, when it is necessary to break it, and how that can be done with the least chance of
accident dominated much of the discussion. Issues of access coatrol, constness, and abstraction in general
influenced this design. As ever, it was considered essential that no concern of efficiency or basic ability to
perform a task, however low-level, should force people to use C instead of the proposed G+ features. This
design is believed to be a complete alternative to old-style casts.

I do not, however, propose to ban old-style casts; that would be an ill-advised introduction of a major
incompatibility. Instead, the proposed facilities provide the individual programmer with a way to avoid the
insecurities of old-style casts where type safety is more important than compatibility.

This discussion assumes that the static type of an operand is comrect. someone already has *lied,”
say, so that a pointer of type B* doesn’t really point to a B or something derived from B and isn’t 0 either,
then then the result of conversions of that pointer are undefined.

When the term sub-object is used ‘‘sub-object representing a base class’’ is meant. There is no proposal
to define casts from members to their enclosing object.

2 Problems with Old-style Casts

The C and G+ cast is a sledgehammer; (T) expr will - with very few exceptions - yield a value of type T
based in some way on the value of expr. Maybe a simple reinterpretation of the bits of expr is involved,
maybe an arithmetic narrowing or widening is involved, maybe some address arithmetic is done to navigate
a class hierarchy, maybe the result is implementation dependent, maybe a const or volatile attribute
is removed, etc. It is not possible for a reader to determine what the writer intended from an isolated cast
expression. For example:

const X* pc = new X;
/7 ...
pv = (Y*)pc;

Did the programmer intend to change the type from X to Y without changing the value? Cast away the

.2.

const attribute ? Both? Is the intent to gain access to a private base class Y of X? The possibilities for
confusion seems endless.

Further, an apparently innocent change to a declaration can quietly change the meaning of an expression
dramatically. For example:

class X : public A, public B { /* ... */ };

void f£(X* px)
{

((A*)px)->g(); // call A’s g
}

Change the definition of X so that A no longer is a base class and the meaning of the cast (A*) px changes
completely without giving the compiler any chance to diagnose a problem.

Apart from the semantic problems with old-style casts, the notation used is unfortunate. Because the
notation is close to minimal and uses only parentheses - the most overused syntactic construct in C - casts
are hard for humans to spot in a program and also hard to search for using simple tools such as grep. The
cast syntax is also one the sources of C++ parser complexity.

To sum up, old-style casts:

[1] are a problem for understanding: they provide a single notation for several weakly related opera-

tions;

[2] are error prone: almost every type combination has some legal interpretation;

[3] are hard to spot in code and hard to search for with simple tools;

(4] complicate the C and C++ grammar,

The aim of this proposal is to eliminate these problems by providing alternatives to the various uses of old-
. style casts.

x

'3 Thedynamic_cast Operator
, The
g dynamic_cast<D*>pb;
operator is meant to replace
(D*)pb
for casts from a base to a derived class. Dynamic_cast examines the object referred to by its argument

and if that object is of the desired result type a valid pointer is returned; otherwise the result is 0. That is,
dynamic_cast is a new variation of the *‘checked cast”’

(?D*)pb
suggested in the paper on Run-time Type Identification [1]. A more extensive argument for the introduc-
tion of dynamic_cast into C++ can be found in that paper. For example:

class B { /* ... */ };

class D : public B { /* ... */ };

void £(B* pb, D* pd)
{
D* pd2 = dynamic_cast<D*>(pb); // this is what we used
// to call (?D*)pb.

B* pb2 = dynamic _cast<B*>(pd); // safe conversion, no

// run-time check needed
/7 ..

f(new B,0);
£(0,0);

would both cause pd2 and pb2 to be initialized with 0. On the other hand, the calls

f(new D,new D);

would cause pd2 and pb2 to be initialized with a pointer to the appropriate D objects.

Operands
For dynamic_cast<T>(arg). T must be a pointer to object type or a reference to object type. The
(static) type dargmustbe a polymorphic pointer or reference to type; that is a pointer or reference to a
type with at least one virtual function. In addition, dynamic_cast can cast from any polymorphic .
pointer to an accessible base class or void*. In the latter case, the void* will point to the complete
object that the pointer referred to a sub-object of. For example:

B* pb = new D;

void* pv = dynamic_cast<void*>(pb);

// pv points to the start of the D object

Note that dynamic_cast<void*> differs from the old-style cast (void*) - and from the
static_cast<void*> operator defined below - by ‘‘finding’* the start of the object.

Cast to Puinter Types
Consider

dynamic_cast<T*>(p)

The result is of type T*. The argument, p, must be of pointer type or the constant 0. The result of
dynamic_cast<T*>(0) is 0.

Let us call p’s (static) type X*. If X* is an incomplete type dynamic_cast<T*> (p) is an error.
The reason for this is that to do a dynamic_cast we need enough information about the argument’s type
to be able to retrieve type information from the argument for use in a run-time type check. If T is an acces-
sible base class of X, the conversion is safe and will be done without a run-time check.

If T is not a an accessible base class of X then X must be a polymorphic type. In this case, T need not be
a complete type. The types T and X are compared at run time and if *p is a subobject of a T or a sub-object
of a type that has a unique public base of type T then a pointer to that T is returned.

Basically, dynamic_cast is navigation in a class hierarchy. Given a pointer to some sub-object
identified by its class the result will be to a base, derived, or sibling class to the class of the original pointer
(or that class itself) and the resulting pointer will point to the appropriate sub-object of the original object.

Access Protection

The dynamic_cast operator differs from old-style casts, and from the proposal for (?T*) p, by respect-
ing (simplified) access rules. For example:

class B { /* ... */ };
class D : private B { /* ... */ };

void £(D* pd)
{

B* pb = dynamic_cast<B*>(pd); // error: access violation
}

That is, errors that can be detected by the compiler are reported at compile time. Errors that cannot are
indicated at run-time. For example:

class A { /* ... */ };
class B { /* ... */ };

void f(B* pb)
{

A* pa = dynamic_cast<A*>(pb); // use run-time type information
}

class D : private A { /* ... */ };
class DD : public D, public B { /* ... */ };
void g{()
{
f(new DD);

}
Here pa becomes 0 because the base A is inaccessible to DD.
Consider,
void £(B* pb)
{

A* pa = dynamic_cast<A*>(pb);
}

If *pb is a sub-object of an A then a pointer to that A is the result. Otherwise, let X be the (dynamic) type
of the object pointed to by pb. If A is a unique public base of X then a pointer to the A in X is the result.
Note that private and protected bases are not considered when looking for A in X. This simplified (and
slightly restrictive) rule mirrors the behavior of exception handling and can be checked without considering
the (static) context of the cast.

The reason to respect access rules is to avoid accidental violation of abstractions. For example:

class SS : public Set, private Slist ({
slink* current_element;
/7 ...

| S

Here the representation of an SS is an S1ist and 2 current_element. Presumably every operation
on an SS must ensure that the S1ist and the current_element carresponds. Consider:

void f(set* pset)

{
Slist* pslistl = dynamic_cast<Slist*>(pset); // 0: Slist is private
$S* pss = dynamic_cast<SS*>(pset); // ok
/7 ...

}

In the first cast (to to private sibling class S1ist) it is too dangerous to return a pointer to the sibling sub-
object. The programmer doesn’t actually know the type of the object enclosing the Set and S1ist sib-
lings and therefore can’t make an informed judgement whether breaking the protection is warranted or not.
Anyway, that would still leave the private member current_element inaccessible. We considered pro-
viding an operation access_cast<Slist*> (pss) to allow the user to do what can be done with an
old-style cast (S1ist*)pss, but found such an operation neither necessary nor sufficient for the purpose
of gaining access to a representation,

The fundamental rule for access is that it is always granted by the class and never unilaterally grabbed
by other code. This implies that a function such as £ () above can gain access to SS’s representation only
if SS has made arrangements to allow it. For example:

class SS : public Set, private Slist {
Slink* current;

/7 ...
public:
/7 ...
Slist* get_list();
Slink*& current();
}i

void f(set* ps)
{
SS* pss = dynamic cast<SS*>(pss);

if (pss) {
Slist* psl = pss->get_list();
// ...

}

else {
// .

}

It is with some trepidation that I suggest banning casting to a private base because that leaves one thing that
can be done by an old-style cast but not by the new cast operators. However, I consider the ability to cast to
a private base class (for example, (slist*)pss) a misfeature that is neither necessary nor sufficient to
gain access to a private representation in general. It also violates the fundamental rule about granting of
access. Thus casting to a private base class should not be provided by a replacement for old-style casts.
Note that there has been no demand for an operation for grabbing access to private data in general.

Cast to Reference Types :
A dynamic cast to a reference type

dynamic_cast<T&> (obj)

is similar to a pointer cast except that obj must be a reference or an object and failure to convert is indi-
cated by throwing a Bad_cast exception rather than returning 0.

Cast to Other Types
Dynamic_cast can only be be used for pointers and references to polymorphic types. Dynamic_cast
cannot be defined for user-defined types and cannot be redefined for pointers or references by the user.

Why not? The idea is to reserve dynamic_cast for inquiries about the actual type of polymorphic
objects. Other conversions can be performed by static_cast (§4) which is a closer equivalent to the
old-style cast as used for well-bechaved conversions between non-pointer types. Allowing
dynamic_cast to be used for other conversions that depends on the value of an object and may fail (at

run time), such as a long to int would be logical, but not necessary because such operations can be
defined without new conversion operators.

Uses of Dynamic Casts
Dynamic casts have two main uses:
[1] Casting from a base to a derived class (downcasting).
[2] Casting from a base to a public sibling class (cross-hierarchy casting).
Both can be seen as gaining access to other valid interfaces for an object that we already have a handle on.
For example:

void f£(A* pa)

{
X* px = dynamic_cast<X*>(pa);
B* pb = dynamic_cast<B*>(pa);
/7 ...

}

would yield non-zero px and pb if pa pointed to a class like Y:
class X : public A { /* ... */ };

class Y : public X, public B { /* ... */ };

Comparison with Old-style Casts

Dynamic casts provide a mechanism that isn’t currently directly supported in G+. To determine whether
an object is of a given derived class requires scaffolding in the base class of some form; for example, a vir-
tual function [2] or a type field. Once a pointer to a derived class is found, old-style casts allow us to break
the access protection by casting to 8 private base class. This is not desirable and in any case an old-style
cast is an insufficient mechanism for gaining access because it gives access to private bases only and not in
general to private members.

A fundamental advantage of dynamic_cast over old style casts is that it does a specific operation so
that compile time errors can be issued for misuses, such as attempting a dynamic_cast on an object of a
type that does not support it, and so that the meaning of a dynamic_cast is evident from the source
code.

Tt is clearly harder totype dynamic_cast<D*>(p) than-to type (D*)p. This-is-deliberate. The —
aim is partly to make casting somewhat unattractive and - more importantly - to make uses of casts highly
visible in code and to make it easy to search for with simple tools, such as Unix’s grep. Ideally, the length
of the cast operators would reflect the ugliness of their semantics. Casts are occasionally necessary, but the
ideal must be to avoid them.

4 The static_cast Operator
The
static_cast<T>e;

operator is meant to replace
(T)e

for conversions such as long to int and Base* to Derived* that are not always safe but frequent and
well-defined (or at least well-defined on a given implementation) in cases where the user does not want a
run-time check. For example:

class B { /* ... */ };
class D : public B { /* ... */ };

void £(B* pb, D* pd)
{
D* pd2 = static_cast<D*>(pb); // this is what we used
// to call (D*)pb.

B* pb2 = static_cast<B*>(pd); // safe conversion
// ...
}

In contrast to dynamic_cast, no run-time check is required for the static_cast<D*> (pb) conver-
sion. The object pointed to by pb might not point to a D in which case uses of *pd2 are undefined and
probably disastrous.

Operands

For static_cast<T> (arg). T must be a pointer, reference, arithmetic type, or enumerations. Pointer
to function and pointer to member conversions are allowed following the rules for old-style castst. The
argument, arg, must come from the same set of types and match T as described below. All pointer and
reference types must be complete; that is, converting to or from a pointer to a type for which the declaration
hasn’t been seen using static_cast is an error. For example:

class X;
class Y;

Y* £(X* px)
{

return static_cast<Y¥*>(px); // error: incomplete types
}

In addition, user-defined conversions are invoked by static_cast.

Cast to Pointer Type

Static_cast can convert from a derived class to a unique, accessible base class and from a non-virtual
base class to a derived class. Static_cast cannot convert between apparently unrelated pointer types
where an inheritance relationship isn’t known. For example:

clags X { /* ... */ };
class Y { /* ... */ };

void f£(X* px)
{

Y* py = static_cast<¥*>(py); // error: unrelated types
}

Like, dynamic_cast, static_cast on pointers to classes is navigation in a class hierarchy. How-
ever, static_cast relies exclusively on static information (and can therefore be fooled). Consider:

class B { /* ... */ };
class D : public B { /* ... */ };

void £(B* pb)
{
D* pdl = dynamic_cast<D*>(pb);

D* pd2 = static_cast<D*>(pb);
/1l ...
}

If pb really points to a D then pd1 and pd2 get the same value. So they do if pb==0. However, if pb
points to a B (only) then dynamic_cast will know enough to return 0 whereas static_cast must
rely on the programmer’s assertion that pb points to a D and returns a pointer to the supposed D object.
Worse, consider:

class D1 : public D { /* ... */ };
class D2 : public B { /* ... */ };
class X : public D1, public D2 { /* ... */ };

+ These rules could probably be improved by introducing equivalents to void* for pointers to functions and pointers to members, but
that is not relevant to this discussion.

void g{()

{
D2* pd2 = new X;
£(pd2);

}

Here, g () will call £ () with a B that is not a sub-object of a D. Dynamic_cast will correctly find the
sibling sub-object of type D whereas static_cast will return a pointer to some inappropriate sub-object
of the X. Fundamentally, static_cast cannot check the assumption that the types of its argument and
its result type are related through some base/derived relationship and relies on the programmer. On the
other hand, static_cast can be used where no run-time information is available and will typically be
significantly faster,

In addition, static_cast can cast from any pointer to object type to a void* and from void* to
any pointer to object type. The void* to T* conversion cannot be checked but is well-defined.

Cast to Pointer to Member Type
Static_cast isdefined exactly as old-style cast for pointers to members except that there are no conver-
sions to or from non pointer to member types.

Cast to Pointer to Function Type

Static_cast is defined exactly as old-style cast for pointers to functions except that there are no con-
versions to or from non pointer to function types.

Cast to Reference Type
A static cast to a reference type

static_cast<T&> (obj)

is similar to a pointer cast except that ob j must be a reference or an object.

Cast to Arithmetic Type
The usual arithmetic conversions are performed by static_cast. For example:

void f(int a, double d)

{
int a2 = static_cast(d);
double d2 = static_cast(a);

int a3 = d;
double d2 = a;
}

Some of these conversions are guaranteed to be mathematically correct, but most, such as the two examples
above, are not because significant information can be lost through narrowing. In the example above, not all
doubles can be represented as ints and, one can provide a legal G+ implementation where the largest
int can’t be represented exactly as a double.

The point of using explicit casts for conversions that are also performed implicitly is to make it possible
for compilers to warn against narrowing conversions and eventually be able to disallow them (§8).

Cast to Enumeration
A static_cast can be user to turn an integral value into an enumeration value:

enum A { a, b, ¢ };

void f(int i)
{

A x = static_cast<A>(i);
}

-9-

The result is undefined unless the value of i is the same as the integer value of one of A’s enumerators.

User-Defined Conversions

User-defined conversions are applied implicitly (see §5) and static_cast will perform all implicit con-
versions. This leads to a question about whether to apply the built-in conversion or the user-defined con-
version in the (rare) case where both are defined. For example:

class Y { };

class X : public Y {

public:
operator Ys();
}i
void £()
{
X x;
Y& rl = static_cast<¥&>(x); // ?
Y& r2 = (Y&)x; // invoke X::operator Y&();

}

For compatibility, I suggest that the user-defined conversion is invoked exactly as for old-style cast. This
preserves the important property that in the cases that are legal for static_cast the semantics is
unchanged from that of old-style casts. An alternative would be to deem such examples ambiguous for
both old-style casts and static_cast.

Run-time Checking

May an implementation apply run-time checking to compensate for static_cast’s lack of guarantees?
As for every other use of an undefined operation, an implementation of static_cast may detect unde-
fined behavior and report it at compile time or run-time. Note that the result of (char) 666 is undefined

even in C (assuming 8 bit characters) and an implementation is allowed to do anything, including a core
dump upon encountering it.

The interesting question is if a C++ implementation may throw an exception if it detects
static_cast<char>(666) at run time. My suggested answer is ‘yes.” This allows exception han-
dling and optional run-time checking to interact. Note that to make sense equivalent decisions must be
made about the behavior of range errors for arrays and other common sources of undefined, yet, detectable
behavior.

Comparison with Old-style Casts

Static_cast implements the subset of old-style casts that deals with well defined relationships between
types. The main advantage of Static_cast<t>(e) over (T)e is therefore that one cannot acciden-
tally cast unrelated types. A related advantage is that conversions of incomplete types are not performed by
Static_cast<t>. Naturally, uses of in a program Static_cast is also easier to find.

5 The Constructor Call Notation

In addition to the old-style cast notation (T)v, C++ supports the constructor notation T (v). I propose
T (v) as a synonym for valid object construction as in initializations such as
T val = v;

(that we don’t have a good name for) rather than (T)arg. This requires a transition because - like the
suggested deprecation of (T) arg - this will break existing code. For example:

-10-

typedef char* Pchar;

void f(int* pi)

{
char* pc = Pchar(pi); // conversion of unrelated pointer types
/7 ...

}

I suspect that code of this kind is too common to ban outright. Consequently, T (v) will have to remain a
synonym for (T) v for this standard, but I would like to see this equivalent *‘deprecated’’ (see §8) with the
aim of having the meaning of T (v) be defined as construction

(temp_of_type T=v,temp of_type_T)
in a future standard. For example:

typedef B* PB;
typedef D* PD;

void £(PB pb, PD pd)
{
PB(pd); // ok: equivalent to
// PB t; ... (t=pd,t)
PD(pb); // error: equivalent to
// PD t; ... (t=pb,t)
// (warning only, for now)
}

I would hope to see compilers issue warnings for uses of T (v) that do not fall into the subset defined by
construction.

User-defined Conversions
User-defined conversions, that is constructors taking a single argument and conversion operators are called
implicitly and will therefore be invoked by the constructor notation. For example:

class X {

public:
X(int);
X({int,int);
operator int();

}i

X x1 =1; // invoke X::X(int)
X x2 = X(1); // invoke X::X(int)
int i = x1; // invoke X::operator int ()

int i = int(x2); // invoke X::operator int ()
In addition, the constructor notation is of course used for multi-argument constructors:
X x3 = X(1,1); // invoke X::X(int, int)

The decision to restrict invocation of user-defined conversion to the constructor notation (functional nota-
tion) was only reached slowly. The observation that user-defined conversions (rightly) belonged to the set
of conversions applied implicitly was crucial. In that sense, user-defined conversions are classified as more
fundamental and *‘safer’’ than the (built-in) conversions that requires explicit application.

The alternative would be to have user-defined conversions invoked by static_cast aaly (because
user-defined conversions are chosen based on static information and may by narrowing), invoked by
dynamic_cast only (because user-defined conversions can look at the value involved and may indicate
failure through distinguished values, such as 0. or through exceptions), or by both static_cast and
dynamic_cast. The alternative of having different kind of user-defined conversions for the different
kinds of cast operators was rejected as too complicated.

Because static_cast will invoke implicit conversions it can be used to invoke user-defined

-11-

conversions. This helps the writing of templates.

Because dynamic_cast is assumed to rely on specific run-time information, allowing it to invoke
user-defined conversions could lead to confusion in the (rare, reference cast) cases where there is a choice
between the built-in semantics and a user-defined conversion. I see no reason to introduce this possibility
for confusion given that user-defined conversions can already be invoked implicitly, by the constructor
notation, and by static_cast.

One crucial test for the classification of conversion operations implied by the choice of notation is how
one can write templates. The choice made is based on the assumption that user-defined types with coaver-
sions behave like built-in types like char and int so that a template can deal uniformly with those types.
Pointers on the other hand, are best manipulated separately in templates that knows about pointer seman-
tics. User-defined types that rely on dereference operations will be grouped with pointers in this respect.
Similarly, templates that do not dereference pointers can treat pointers like other types.

If this is not sufficient users can define their own conversion operators.

6 The reinterpret_cast operator
The

reinterpret_cast<T>e;
operator is meant to replace

(T)e

for conversions such as char* to int * and Some_class* toUnrelated_class* that are inherently
unsafe and often implementation dependent. Basically, reinterpret_cast<T> (e) ; returns a value of
T that is a crude re-interpretation of the value of e. For example:

class S;
class T;

void £(int* pi, char* pc, S* ps, T* pt, int i)
{

pi = reinterpret_cast<int*>(pi);

pPs = reinterpret_cast<int*>(pt);

Pt = reinterpret_cast<int*>(pc);

i = reinterpret_cast<int*>(pc);

pt = reinterpret_cast<int*>(i);
}

The reinterpret_cast operator allows any pointer to be converted into any other pointer type and
also any integral type to be converted into any pointer type and vise versa. Essentially all of these conver-
sions are unsafe and/or implementation dependent. Unless the desired conversion is inherently low-level
and unsafe, the programmer should use one of the other casts.

Note that reinterpret_cast does not do class hierarchy navigation. For example:

class A { /* ... */ };
class B { /* ... */ };
class D : public A, public b { /* ... */ };

void £(B* pb)
{
D* pdl
D* pd2

reinterpret_cast<D*>(pb);
static_cast<D*>(pb);
}

Here, pd1 and pd2 will typically get different values in a call
f(new D);

pd1 will point to the start of the B object passed whereas pd2 will point to the start of the D object of with
the B passed is a sub_object.

-12-

Operands

For reinterpret_cast<T> (arg). T must be a pointer, reference, arithmetic type, pointer to function
or pointer to member. Basically reinterpret_cast<T> (arg) provides all of the meanings of
(T)arg not provided by dynamic_cast, static_cast, and const_cast.

Comparison with Old-style Casts

Reinterpret_cast<T>(arg) is almost as bad as (T)arg. However, reinterpret_cast is
move visible, never performs class hierarchy navigation, and does not cast away const or volatile.
Reinterpret_cast is an operation for performing low-level and usually implementation dependent
conversions - only.

7 The const_cast Operator

The
const_cast<T>(e);

operator is meant to replace
(T)e

for conversions used to gain access to data specified const or volatile. For example:
extern "C" char* strchr(char*, char);

const char* strchr(const char* p, char c)
{

return strchr(const_cast<w char*>(p), W c);
}

In const_cast<T> (e), the type argument T must be identical to the type of the argument e except
for const and volatile modifiers. The result is of type T.

Redundancy

Clearly, const_cast<T> is redundant in that we could define a const_cast operator that simply
stripped off all const and volatile specifiers from the (unmentioned) type of its operand. However,
this lack of redundancy would eliminate all possibilities for consistency checks and leave const_cast
syntactically different from other casts.

Comparison with Old-style Casts
When using an old-style cast to cast away const there is no way for a compiler to know whether the type
was (also) meant to be changed. For example:

const X* pc;
/...
Y* py
Y* pv
Y* pz
Y* pv

(Y*)pc; // ok, but what is the intent?
const_cast<¥*>(pc); // error: pc is not a Y*
static_cast<¥*>(pc); // error: *pc is const
static_cast<Y*>(const_cast<X*>(pc)); // ok

Const_cast was reluctantly introduced after several attempts to find sufficient reason to ban ‘‘casting
away const.”’ See Appendix A for details.

8 Deprecating old-style casts

We cannot prohibit old-style casts. It is not the business of a standards committee to break all existing pro-
grams and I conjecture that there exist very few significant cast-free CG++ programs. By providing better
alternatives we can, however, enable individual programmers to adopt a cast-free style. Implementors can
support such programmers by compiler options that warnings against old-style casts, implicit narrowing
conversions, and uses of the function-style (constructor-style) casts that are not equivalent to implicit

<~

-13-

conversion. I think we should encourage programmers to move away from these constructs. A statement
to that effect should be part of the standard. These constructs could be put on a list of things we “‘expect
not to be part of the next standard after this one’’ similar to the list found in the C standard.

9 Why Casts?

Casts are inherently ugly (semantically as well as syntactically), so why have them? In particular, why
replace a single cast operator with four new ones? In addition to the points made above, it should be noted
that if we support run-time type checks through a checked cast, such as (?T*)p or
dynamic_cast<T*>(e) in addition to old-style casts, such as (T) e, then we already have two casts.
The only way of keeping the number of casts to one is to

[1] Not to introduce a checked cast operation.

[2] Use the old-style cast notation for checked casts (also).

(3] Use a completely different notation for converting from a base class pointer to a derived class

pointer based on a run-time type check.

It seems to me that there has been overwhelming sentiment against [1] and we tried [2] without any luck.
The argument against [1] is basically *‘but we need it badly and we already fudge it in many incompatible
ways.”” The argument against [2] is basically ‘‘but having old-style casts serving yet another purpose is far
too confusing and some code will silently change meaning, slow down significantly, or both.”” I have only
seen one potentially acceptable solution along the lines of [3] (suggested by someone at the London meet-
ing, I don’t recall who (sorry)): Allow conversion from base to derived in initializations placed in condi-
tions (only). For example:

class B { /* ... */ };
class-D : public B {/* e *L Vs o .

void £(B* pb)
{
D* pdl = pb; // error: no conversion

if (D* pd2 = pb) { // run-time checked conversion
// here we have a D pointer to by pd2
}
else {
// here we don’t
}
}

I consider this the only realistic alternative to a set of checked casts. A disadvantage is that it does not open
a path to the abandonment of old-style casts and narrowing conversions and that it requires the introduction
of a new variable to perform a run-time checked conversion. In particular, it implies that a run-time
checked conversion can be done in a statement context only. I also conjecture that a fair amount of trouble
and confusion would arise from this scheme because there is no new syntax for people to identify the new
mechanism with.

10 Conversion Strategies

Given a program, how would one convert it to using the new cast notation? Before the new cast operators
are available one could find all uses of casts (not an easy task without compiler support, but trivial given
such support) and try to determine what the intent of each cast was. Then each cast can be eliminated,
changed to a macro with a name reflecting the intent, or have a comment added to indicate its intent. Some
organizations have already independently adopted such measures to alleviate the maintenance problems
caused by old-style casts. Significantly, the classification of casts reflected in the definition of the four cast
operators proposed here appears to have been independently discovered in several places.

Given, the new operators, the most effective strategy will probably be to change all casts to
static_cast and have the compiler tell which ones are “‘ill behaved.” Then the program can then be
studied with the aim of eliminating casts and having the necessary ones expressed in terms of the most
appropriate (new) cast operators.

-14-

11 References:

(1] Stroustrup, Bjarne: The C++ Programming Language (2nd Edition). Addison Wesley. 1991.
[2] Stroustrup, Bjarne and Lenkov, Dmitry: Run-time Type identification for C++ (Revised). Proc USENIX
C#+ Conference. August 1992.

12 Acknowledgements

Many people have provided inputs to this proposal. The most significant contributions were by Andrew
Koenig and Jerry Schwarz. Several useful refinements were caused by the discussion of casting in general
and of the notion of const that we had in the extensions working group in Boston.

13 Appendix A: Casting Away const

Ideally, we wouldn’t have an operation for casting away const. So let’s consider if we could make do
without one. Consider:

const int x = 7;
void f(const int* p);

void g()

{
f(&x);
if (x == 7) { /* ... */ }
!/ ...

}

Is a compiler entitled to optimize away the x==7 test because it knows that x is a constant valued 77
Alternatively, must it assume that despite its promise £ () might have changed the value of x?

void f(const int* p)

{
((int*)p)++; // fooled you!
// const_cast<int*>(p)++;

}

As usual, the cast notation obscures what is really going on. I seems desirable that a compiler should be
entitled to optimize simple examples like this so that casting away const in these cases therefore is inher-
ently unsafe.

A compiler is allowed to make the optimization because any const object of a type without a user-
specified constructor may be put in ROM. Anyone who casts away const for an object of a ROMable
type and try to change its value is asking for trouble by writing a program that is not guaranteed to work.

However, not all calls of £ () leads to undefined behavior. Consider:

void g()
{
int a = 1;
f(sa);
if (@ ==2) { /* ... */ }
/...
}

Here a promise not to modify the argument is broken, but the result is well-define because the object modi-
fied wasn't defined to be const. In this case, the compiler is not entitled to optimize away the test.

Where const is used in interfaces to give an illusion of invariance of larger objects, casting away
const is allowed and well defined. For example:

-15-

class X { // #1 caching of values
V cache;
// ...

public:

VvV f£(int arg) const
{
if (same argument as last time) return cache;
// compute
return ((X*)this)->cache = v;
// return (const_cast<X*>(this))->cache = v;

}
}i
X x1;
const X x2;
!/ ...

Vvl =x1.£(1);
Vv2 = x2.£(2);

The cast is necessary to allow an update of the X.cache. Disallowing casting away const invalidates
this technique. We could re-allow it by accepting the proposal (now being considered by the committee) to
allow a data member to be specified ‘‘never const:”’

class X {
“const V cache;
/7 .

public:
VvV f(int arg) const

{
if (same argument as last time) return cache;

// compute
return cache = v;

}i

X x1;

const X x2;

/7 ...

Vvl =xl1.f(1);
VvV v2 = x2.£(2);

or something like that. This makes the manipulation of constness declarative but I fail to see the really
significant gain unless we could actually outlaw casting away const. This would force people to rewrite:

class X {
V* cache;
/1l ...
public:
VvV f(int arg) const
{

if (same argument as last time) return cache;

// compute
return *cache = v;

bi

X x1;

const X x2;

/7 ...

Vvl = x1.£(1);
vV v2 = x2.£(2);

If we were dealing with a new language rather than a standards effort I think I'd prefer the re-write to the

«16-

“const patch on the const concept. Unfortunately, there is a more general technique that relies on cast-
ing away const that - as far as I can gather - is important in real code:

void T::£() const // #2 abstract state
{
T* This = (T*)this;
// T* This = const_cast<T*>(this);
++This->changing_this_doesnt_change_abstract_state;
/...
}

Basically const exists at the user level and the implementation operates by its own rule: *‘So as soon as
we descend into the untyped representation, consts are generally stripped off. (Keeping track of them,-
and stripping them only when gbsolutely necessary, wouldn’t decrease the likelihood of a bug.)’”” The
“const notion for data members doesn’t help much here except in the extreme case where every member
is “const so that the notion of constness is completely disabled for that type. Ican imagine approaches to
this problem in the form of more modifiers on member functions, but a third class of examples seems even
worse from the perspective of managing without an operator for casting away const.
Casting away const can also be used to allow shared representation:

// #3 shared representation
template <class T>

class List_of p : private List<const void*> {

T* first(); // must cast away const when T is non-const

// ...
}i

This really requires casting away const (and happens to be safe). No elaboration of class declaration along
the lines of ~const seems to help. :

The most prominent example of this use of casting away const is the implementation of G+ functions
by calling C functions:

extern "C" char* strchr(char*, char);

-

const char* strchr(const char* p, char c)
{
return strchr((char*)p, c¢);

// return strchr(const_cast<char*>(p), c);
}

Yet another use of casting away const is various forms of data gathering:

complex f(const complexs aa) // #4 data gathering
{

complex ¢l = aa+5;

complex ¢2 = aa+7;

/...
}

Can £ () rely on + not changing aa to the point where it can copy aa into a register and not copy it back
again? Not if complex has an extra member used to count the number of operations performed. If so, the
optimization will defeat the data gathering.

My conclusion is that casting away const is necessary in some form even if we were not constrained
from breaking existing programs. This conclusion is independent of the outcome of the ~const effort, I
now see ~const primarily as a potential mechanism for minimizing casts, rather than as a mechanism that
potentially could eliminate casting away const. This implies that the problem is to find the most suitable
form; const_cast<T> (v) is the result of these considerations.

